
L1-Computer Science – All Sections – Algorithmics and Data Structures 2 (ADS2)
Chapter 2 : Files (Text Files and Binary Files)- Algorithmic Language and C Language

 L1.Computer Science.ADS2.Pr Boucheham

 Page 1

Content :

 Introduction

 Definitions

 Types of files

 Files usage

1. Introduction :

Until this point, the data used in programs was stored in RAM, only. Recall, however, that data stored in RAM (only)

lasts only during the programs execution. The data stored in memory only is then said volatile data, in the sense that,

these data will simply disappear when the program ends. On the other hand, it is well known for all that, part or all of

the data stored in RAM only can be needed for later use by the same program (software) or other programs (software).

In this case, these data must be re-entered to the programs (software) if needed (Fig.2.1a).

This solution can be adopted for data of small size. However, for data of big size, another solution is used (Fig.2.1b).

Indeed, files are the common way to store data, permanently. This solution allows re-using data by the same program

(software), or, by other programs (software). This last case is referred to by data sharing.

Program1 Program 2

Results

Data processing

Screen Printer

a. Results, if needed for later use, must be,

manually input.

Files : Data , , used by one program or shared by many,

permanently stored on Disks, Flash Disks, SSDs, etc.

Data used by more

than one program

b. Data, permanently stocked in files can be automatically

reused, when needed, as needed.

Figure.2.1 : Why are Files necessary ?

 : Output

 : Input

L1-Computer Science – All Sections – Algorithmics and Data Structures 2 (ADS2)
Chapter 2 : Files (Text Files and Binary Files)- Algorithmic Language and C Language

 L1.Computer Science.ADS2.Pr Boucheham

 Page 2

Briefly, Files can be seen as:

a. Particular Data Structures, used for permanent storing of data.

b. Files are created and manipulated on external permanent data storing tools: Disks, Flash disks, Solid-state

drives (SSDs), etc.

c. Data within files is then stored for later use by programs (software), including programs that did not create

them, once, or repeatedly, as needed, when needed.

d. Files are two types: Text Files and Binary Files.

In the following, in this Chapter 2, files are presented, explained and illustrated. This step allows us then to consider

solving other kinds of problems, hence, opening for us new horizons in the activity of programming.

2. Definitions :

- File: A file is a collection of data identified by an external name (name for short) including a path allowing

access to the file on an external stocking device: Hard Disks, Flash Disks, SSDs, etc. These storing tools are

said to be mass memory, to distinguish them from RAM.

- File external name: is an identifier (string) that allows the File Management System (FMS), a part of the

Computer operating System (OS), to identify it and manage it. Following are examples of file names:

 Photo1.jpg : File in image JPEG standard.

 Chapter2.pdf : File of type .pdf (Portable Document Format), a well known and intensively used document

format.

 Prog2.exe : A file of type executable program.

 Prog2.c : A file stocking a C language program.

As can be noticed, a file name is composed of two parts, separated by a dot:

FileName.Extension

The file name is generally chosen by the programming person, the extension is determined by the nature of

the file content. The extension helps automatically the FMS use the good software to open a file of specific

type. For example, a .pdf file can be opened and manipulated by PDF-Reader software. Likewise, an image

file can be opened, for example, by PHOTOS software of Windows OS.

- Data within files can be homogeneous (same type of data, e.g. text, integer, etc., exclusively), or heterogeneous

(mixture of more than one type).

L1-Computer Science – All Sections – Algorithmics and Data Structures 2 (ADS2)
Chapter 2 : Files (Text Files and Binary Files)- Algorithmic Language and C Language

 L1.Computer Science.ADS2.Pr Boucheham

 Page 3

- Data within files are generally accessed in a sequential mode from the beginning to the end of the files.

However, there exists also a direct access mode that allows targeting specific positions in files.

- Practically, accessing a file by programs requires a logical name associated to the physical (external) name of

that file at the opening operation of it.

- The logical name of a file is in fact a pointer to the file buffer, a temporary memory zone where files content

can be edited. Buffering is used to limit the number of files access on disks, since data transfer from disks

(read/write) are generally slow, due to the mechanical nature of hard disks. However, SSDs show much more

speed for data transfer since they are based on flash memory, whereas HDs are based on a mechanical arms

with a read/write head that moves across spinning disks to access data.

Figure 2.2 illustrates file transfer between disks (HDs, SSDs, Flash Disks, etc.) and programs through buffers.

 Figure. 2.2 Data transfer between the files buffer and external media.

- Operations on file are as follows :

 File Opening in Write mode

 File Opening in Read mode

 File Closing

All these operations will be presented and illustrated in the C language, in what follows.

Using a file named : Fich1.dat

Buffer of file Fich1.dat

Fich1.dat

Transfer of data from the buffer to
external media in

Write mode

Transfer of data from the disk to the buffer in
Read mode

External media:

HDs, SSDs, Flash Disks, etc.

L1-Computer Science – All Sections – Algorithmics and Data Structures 2 (ADS2)
Chapter 2 : Files (Text Files and Binary Files)- Algorithmic Language and C Language

 L1.Computer Science.ADS2.Pr Boucheham

 Page 4

3. Files in the C Language :

Like other languages, files are of two types in the C language: Text Files and Binary Files.

 Text Files : are files composed of characters (e.g. ‘’L1-Computer Science-Section2(1.5)’’) and special

characters (e.g: EOL (End Of Line), EOF (End Of File)), in ASCII code.

A text file is usually recognizable by the .TXT extension. However, in diverse OS systems, other extensions

are used for specific types of text files, e.g.:

Configuration files: Saved with extensions like .cfg, .conf, .ini, or .xml, etc.

Source code files: Used for storing programs in various programming languages: e.g. .py for Python, .java for

Java, .cpp for C++, etc.

And other type of files.

 Binary files : Generally speaking, every non text file is a binary file. More specifically, a binary file is a

sequence of 0’s and 1’s that no program can read, interpret and manipulate correctly, except programs knowing

the format they have been created with.

Examples of binary files: As already said, all non-text files are typically binary files. E.g. Images (.jpg, .png),

audio files (.mp3, .wav), video files (.mp4), executable files (.exe, .com), document files (.DOC, .DOCX,

.XLS, .XLSX, .PDF, etc.

 Generally speaking, computer files share many principles and notations. Notably, they share commonly known

operations on files, like READ, WRITE, OPEN and CLOSE. These are presented in Table 2.1, below.

Table 2.1 : Files opening Modes, in the C Language

File Type Opening Mode Code Opening for : Used File

Modified ?

Used File

Suppressed ?

Text ‘r’ Read No No

‘w’ Read/Write Yes Yes

‘a’ Write at the File End Yes No

‘r+’ Read/Write Yes No

‘w+’ Read/Write Yes Yes

‘a+’ Write at the File End Yes No

Binary ‘rb’ Read No No

‘wb’ Read/Create Yes Yes

‘a’ Write at the File End Yes No

‘rb+’ Read/Write Yes No

‘wb+’ Read/Write Yes Yes

‘ab+’ Write at the File End Yes No

These modes are presented, detailed and illustrated, in the following.

L1-Computer Science – All Sections – Algorithmics and Data Structures 2 (ADS2)
Chapter 2 : Files (Text Files and Binary Files)- Algorithmic Language and C Language

 L1.Computer Science.ADS2.Pr Boucheham

 Page 5

i. Using Text Files in C Language:

The operations (functions and procedures) generally used on text files in C language are illustrated in Tables 2.2 and

2.3. For this, we consider a text file Fich1.txt, to be created, then read, then closed. All these operations require the

file opening function.

To be able to use the file Fich1.txt, we use a pointer to a buffer associated with Fich1.txt, called: Fich1Ptr.

We report here that, for writing, as well as for reading, we can access the data in an unformatted or formatted way.

In addition, for binary files, there is another type of access mode: Direct access. Let us develop these elements in the

following:

a. Unformatted Access: This type of access can be carried out on text files according to the following two modes:

• Character by character access (Sequential, Unformatted).

• String access by string (Sequential, Unformatted).

b. Formatted access: In this case, there is reading/writing of variables of specific types: e.g. int, float, char[].

• Direct access can be performed by the fseek() function.

Table 2.2 Text Files Access Modes and Associated Functions

 Access Mode Fonction utilisée Rôle

Non-formated fputc() Writing one character at a time to the file

Non-formated fgetc() Reading one character at a time from the file

Formated fgets() Reading one string at a time from the file

Formated fputs() Writing one string at a time to the file

Formated fscanf() Reading a typed variable: (int, float, string or struct) to the file

Formated fprintf() Writing a simple typed variable (int, float, string) to the file

// fseek() Move the read/write head on the file to a desired position.

L1-Computer Science – All Sections – Algorithmics and Data Structures 2 (ADS2)
Chapter 2 : Files (Text Files and Binary Files)- Algorithmic Language and C Language

 L1.Computer Science.ADS2.Pr Boucheham

 Page 6

Tables 2.3. Functions associated with text files

Function Usage on Fich1.txt Explanations Access Type Illustrations

fopen() FILE* Fich1Ptr = fopen("Fich1.txt"), "w"); Opening the file for

writing/creation

//

fprintf() fprintf(Fich1Ptr,"%d",num); Writing the integer

num in Fich1.txt

Formated (int)

fscanf() fscanf(Fich1Ptr,"%d",&num);

Reading the integer

num from Fich1.txt

Formated (int)

fclose() flcose(Fich1Ptr) ; Closing the file

Fich1.txt

//

feof() !feof(Fich1Ptr) File end reached ? //

fseek() fseek(Fich1Ptr, -15, SEEK_END); Move back 15

characters from the

end of the file

//

ii. Use of binary files:

As already mentioned, binary files are necessarily defined on the basis of typed data: int, float, char, char[]

or struct. Therefore, two types of access are possible on these data, using the formats of their definitions:

Formatted-sequential access or formatted-direct access.

a. Formatted sequential access: In this case, the file is browsed sequentially, from beginning to end, respecting

the format of each data entered or to be entered in the file (int, float, char, char[], struct).

Note here, in the case of int and float, the existence of several variants(subtypes):

int: short int, int, long int, etc.

float: float, double, double double, etc.

Clearly, respecting the formatting is achievable by using the appropriate subtype for correct encoding or

decoding of the data in a binary file.

b. Formatted Direct access: In this access, the binary file is seen as a 1-dimensional array where an index

leads directly to the desired element. In the binary file, there is use of movement according to three modes:

Start of file, Current position or from the End of file, to directly access the desired data.

This access is performed by the C language function: seek(). Its complete syntax is as follows:

L1-Computer Science – All Sections – Algorithmics and Data Structures 2 (ADS2)
Chapter 2 : Files (Text Files and Binary Files)- Algorithmic Language and C Language

 L1.Computer Science.ADS2.Pr Boucheham

 Page 7

int fseek(FILE *pointer, long int offset, int position);

In this code :

*pointer: is the pointer to the binary file..

long int offset : is the displacement (in long int)

int position : is the displacement mode:

0 or SEEK_SET : Relative to the start of the file

1 or SEEK_CUR : Relative to the current position

2 or SEEK_END : Relative to the end of the file.

Below, in Tables 2.4 and 2.5, are the operations performed on binary files:

Table 2.4 Modes d’Accès aux fichiers Binaires et fonctions associées

Access Mode Used Function Role

Formatted fwrite() Writing a formatted data block (Buffer).

Formatted fread() Reading a formatted data block (Buffer).

// fseek() Move the Read/Write head on the file to a desired

position.

Tables 2.5 Functions associated with Binary files

Function Usage on Fich2.bin Explanations Access Type Illustrations

fopen() FILE* Fich2Ptr = fopen("Fich2.bin"), "w"); Opening the file for

writing/creation

//

fwrite() fwrite(&j, sizeof(int), 1, Fich2Ptr); Writing in the file

Fich2.bin of a 1 int j

from its address &j

Formatted

fwrite() fwrite(buf, sizeof(buf), 1, Fich2Ptr); Writing the whole

contents of the buffer

buf to the Fich2.bin

file.

Formatted

fread() fread(&n, sizeof(int), 1, Fich2Ptr) Reading 1 variable n

of type int from the

current position in the

file Fich2.bin.

Formatted

L1-Computer Science – All Sections – Algorithmics and Data Structures 2 (ADS2)
Chapter 2 : Files (Text Files and Binary Files)- Algorithmic Language and C Language

 L1.Computer Science.ADS2.Pr Boucheham

 Page 8

fread() fread(buf, sizeof(buf), 1, Fich2Ptr); Reading 1 block of

data into buffer buf

from the current

position in file

Fich2.bin.

Formatted

fclose() flcose(Fich2Ptr) ; Fich2.bin closing //

fseek() fseek(Fich2Ptr, -15, SEEK_END); Move back 15 bytes

from the end of the

file Fich2.bin

//

4. Illustrations on text files :

In the following, we illustrate the different operations for each type of file. Here are illustrations on text files:

a. Operation of creating a text file:

In this illustration, we want to

- create a text file named ‘text.txt’;

- close it immediately after its creation (the file is then empty);

Here is a program in C language, performing this task:

// Prog1:

#include <stdio.h>

#define FILE_NAME "text.txt"

int main(){

FILE * file_ptr = fopen(FILE_NAME, "w"); // Creation of the file (mode ‘w’)

fclose(file_ptr);

return 0;

}

Notes:

- If the file ‘text.txt’ does not exist in the current directory, it will be created.

- If the file ‘text.txt’ already exists in the directory, it will be overwritten (emptied of its content).

- The file will be used in the different programs, through its pointer (here: file_ptr).

- Once the file is closed by flclose(file_ptr), it can no longer be used by any other operation, before it is opened

again by the operation: fopen().

L1-Computer Science – All Sections – Algorithmics and Data Structures 2 (ADS2)
Chapter 2 : Files (Text Files and Binary Files)- Algorithmic Language and C Language

 L1.Computer Science.ADS2.Pr Boucheham

 Page 9

b. Writing text to a file:

In this illustration, we want to:

- Use the file ‘text.txt’ to store 5 integers

- Display each stored number (for later verification)

Here is a program that does this task:

Prog2:

#include <stdio.h>

#include <stdlib.h> // Contains the exit() procedure

int main(){

int num;

int i;

FILE *fptr;

//

fptr = fopen("text.txt","w"); // Opening file txt.txt in writing mode

if(fptr == NULL){

printf("Error!");

exit(1); // Something went wrong using file text.txt

 }

for (i=1;i<=5;i++){

printf("Enter num: ");

scanf("%d",&num);

fprintf(fptr,"%6d",num); // Writing entered numbers in file text.txt

 }

fclose(fptr); // closing file text.txt

return 0;

}

Execution:

Notes:

- File ‘text.txt’ is opened in wring mode : fptr = fopen("text.txt","w");

L1-Computer Science – All Sections – Algorithmics and Data Structures 2 (ADS2)
Chapter 2 : Files (Text Files and Binary Files)- Algorithmic Language and C Language

 L1.Computer Science.ADS2.Pr Boucheham

 Page 10

There is association between the file external name: text.txt and its internal name: fptr.

.

- The successive writing of the 5 numbers entered (from the keyboard) is done by the operation:

 fprintf(fptr,"%6d",num); , in text mode, sequentially and from the beginning of the file.

 Thus, any previously existing data are lost.

c. Reading from a text file, element by element:

In this illustration, the task is to read the elements written in a text file, element by element. We always illustrate on

the already created text file: ‘text.txt’. Therefore, practically, here, we will read the numbers previously written in this

file: {123, 456, 789, 159, 357 }.

Prog3 : Reading the elements entered in the file ‘text.txt’, element by element

#include <stdio.h>

#include <stdlib.h>

int main() {

 int num,i;

 FILE *fptr;

 if ((fptr = fopen("text.txt","r")) == NULL){

 printf("Error opening the file");

 // Execution terminated if pointer fptr == NULL.

 exit(1); // Program terminated

 }

 printf(" File txt.txt is accessed in sequential order:");

 i=0; // Counter of numbers in file "text.txt"

 while (!feof(fptr)){ // feof : end of file

 fscanf(fptr,"%d", &num); // Reading one number at a time

 printf("\n Nombre %d = %d",++i, num); // writing number num on the screen

 }

 fclose(fptr); // file text.txt is closed here

 return 0;

}

Execution:

L1-Computer Science – All Sections – Algorithmics and Data Structures 2 (ADS2)
Chapter 2 : Files (Text Files and Binary Files)- Algorithmic Language and C Language

 L1.Computer Science.ADS2.Pr Boucheham

 Page 11

Prog.4 : Example : Writing a text file, line by line

First, let’s create a file named “Chapter2Eng.txt”, using ‘Bloc Notes’ program of ‘Windows’.

This file will now be used to illustrate how to write a text file LINE by LINE. Here is a C program that does the

needed work:

#include <stdio.h>

#include <stdlib.h>

int main(){

 // Use fp pointer "Chapitre2Eng.txt" in read mode.

 FILE* fp = fopen("Chapitre2Eng.txt", "r");

 char line[256]; // Buffer to store each line of the file.

 if (fp != NULL) { // file opened properly?

 while (fgets(line, sizeof(line), fp)) { // Read the file Line by Line, in Buffer line

 printf("%s", line); // the read lines are then printed on the screen

 }

 fclose(fp); // when the file end is reached, close it.

 }

 else { // an error occurred when trying to open the file:

 printf("Unable to open file!\n"); // Print an error message

 }

 return 0;

}

Execution :

L1-Computer Science – All Sections – Algorithmics and Data Structures 2 (ADS2)
Chapter 2 : Files (Text Files and Binary Files)- Algorithmic Language and C Language

 L1.Computer Science.ADS2.Pr Boucheham

 Page 12

Prog 5 :

Example: Reading a text file, character by character using procedure fgetc(). Read content is displayed on screen.

Each character read is enclosed in < and >.

#include <stdio.h>

#include <stdlib.h>

int main(){

 // fp : pointer to file "Chapitre2Eng.txt"

 FILE* fp = fopen("Chapitre2.txt", "r"); // opening in read mode

 if (fp != NULL) { // File, properly opened?

 char c=getc(fp); // reading 1 character at a time from the file using fgetc()

 while (c!=EOF) { // End of the File “Chapter2Eng.txt” reached ?

 printf("<%c>", c); // read character is output to the screen

 c=getc(fp); // get another character, if possible.

 }

 fclose(fp); // File closing

 }

 else

 printf("Error opening file Chapter2Eng.txt \n");

 }

Execution :

L1-Computer Science – All Sections – Algorithmics and Data Structures 2 (ADS2)
Chapter 2 : Files (Text Files and Binary Files)- Algorithmic Language and C Language

 L1.Computer Science.ADS2.Pr Boucheham

 Page 13

Prog. 6 : Example : Reading a text file, string by string using : fgets()

 // In this illustration, file "Chapitre2Eng.txt" is read, 1 string, of length 30 characters, at a time.

#include <stdio.h>

#include <stdlib.h>

#include <string.h> // string library

int main() {

 int i=0; // strings counter

 FILE *fileptr;

 char str[30];

 fileptr = fopen("Chapitre2Eng.txt", "r"); // file opened in read mode

 if (NULL == fileptr) {

 printf("Error opening file \n");

 exit(1); // program terminated

 }

 printf(" File content – 30 characters at a time : \n");

 while (fgets(str, 30, fileptr) != NULL) {

 printf(" string %d : <%30s> \n",++i,str);

 }

 fclose(fileptr);

 return 0;

}

Execution :

L1-Computer Science – All Sections – Algorithmics and Data Structures 2 (ADS2)
Chapter 2 : Files (Text Files and Binary Files)- Algorithmic Language and C Language

 L1.Computer Science.ADS2.Pr Boucheham

 Page 14

5. Writing to and Reading from Binary Files :

We first recall that writing to a binary file is done by the operation: fwrite() and reading from this kind of file

is done by the operation: fread().

Note that these two functions are part of the standard input/output library: <stdio.h>

We also recall the syntaxes of these operations, in C language:

Generic syntax of fwrite(), in C language:

where :

addressofData: is the RAM address of the data to be written to the file

 sizeData: is the size of data.

numberofData: is the number of data to be written in the file

 pointerToFile : is the pointer (RAM) to the file on external media

The fwrite() function then transfers numbersData of data, each data being of size sizeData, from the memory

address (RAM) addressData, to the file pointed to by pointerToFile.

The size of the transferred data is then: numbersData X sizeData, in bytes.

- Generic syntax of the fread() operation, in C language:

addressofData: is the RAM address of the data (Data) where to read the data (Data) from the file.

sizeData: is the size of the data to be written to the file.

numbersData: is the number of data to be written in the file.

pointerToFile: is the pointer (RAM) to the file on external media.

The fread() function then proceeds to the transfer of numbersData of data, each data being of size sizeData,

from the external file pointed to by pointerToFile, to the memory area (RAM) at address: addressData.

The size of the transferred data is then: numbersData X sizeData, in bytes.

fread(addressofData, sizeData, numberofData,

pointerToFile);

fwrite(addressofData, sizeData, numberofData, pointerToFile);

L1-Computer Science – All Sections – Algorithmics and Data Structures 2 (ADS2)
Chapter 2 : Files (Text Files and Binary Files)- Algorithmic Language and C Language

 L1.Computer Science.ADS2.Pr Boucheham

 Page 15

Here are, then, illustrations of the fwrite() and fread() procedures.

a. Creating / writing to a binary file:

In this illustration, we first create a binary file (‘test.dat’), then, we write 10 integers (j), generated by a formula (j=

3*i+7, i=1 … 10), to avoid manual entry.

Prog.7: Example 1:Writing 10 integers into a binary file, one at a time, sequentially:

#include <stdio.h>

int main(){

int i,j;

 FILE *fp;

 fp = fopen("test.dat", "wb"); // Creation of binary file "test.dat"

 for(i=0;i<10;i++){

 j=3*i+7; // Generating numbers j

 printf("\n For i= %d : j= %d ",i,j);

 fwrite(&j, sizeof(int), 1, fp); // writing 1 integer number j in binary file "test.dat"

 }

 fclose(fp);

 return 0;

}

 Execution:

L1-Computer Science – All Sections – Algorithmics and Data Structures 2 (ADS2)
Chapter 2 : Files (Text Files and Binary Files)- Algorithmic Language and C Language

 L1.Computer Science.ADS2.Pr Boucheham

 Page 16

b. Reading data sequentially from a binary file:

In this illustration, we proceed to reading the 10 numbers previously entered in file ‘test.dat’, sequentially,

starting from the beginning of the file.

Prog.8 : Example 2: Reading the 10 numbers entered in the ‘test.dat’ file, one by one, sequentially:

#include <stdio.h>

int main(){

 int i,v;

 FILE *fp;

 fp = fopen("test.dat","rb"); // opening binary file test.dat in read mode

 i=0;

 printf("Data read from file test.dat:");

 while(fread(&v, sizeof(int), 1, fp)==1){ // 1 int read at a time from test.dat

 printf("\n i=%d v=%d",++i,v);

 }

 fclose(fp);

 return 0;

}

 Exécution:

c. Reading data in bulk, from a binary file:

In this illustration, we read the 10 numbers previously written in the file ‘test.dat’, in bulk, from the beginning of the

file.

Prog.9 : Example 3: Reading in bulk the 10 numbers entered in the ‘test.dat’ file:

#include <stdio.h>

int main(){

int i,j;

 int buf[10];

 FILE *fp;

 fp = fopen("test.dat", "rb"); // opening test.dat in read mode

 fread(buf, sizeof(buf), 1, fp); // transfert of 10 int numbers, in bulk

 printf("Data read in bulk from file test.dat:");

 for(i=0;i<10;i++)

 printf("\n i= %d buf[i]=%d",i,buf[i]);

 fclose(fp);

 return 0;

}

L1-Computer Science – All Sections – Algorithmics and Data Structures 2 (ADS2)
Chapter 2 : Files (Text Files and Binary Files)- Algorithmic Language and C Language

 L1.Computer Science.ADS2.Pr Boucheham

 Page 17

Execution :

d. Binary file defined by the struct structure (heterogeneous content):

Prog.10 :

 Example 4: Writing Struct type records containing a single data (here, integer)
#include <stdio.h>

#include <stdlib.h>

struct entier {

 int val;

};

int main(){

 int n,i;

struct entier e;

 FILE *fptr;

 if ((fptr = fopen("Data.dat","wb")) == NULL){

 printf("Errore opening file Data.dat");

 // Arrêt du programme pour la valeur : NULL.

 exit(1);

 }

 printf(" Number of data in file : n = ");

 scanf("%d",&n);

 for(i = 1; i <= n; i++){

 e.val = 3*i + 1; // 3*i +1 : Numbers generating function

 printf("\n i= %d value =%d", i,e.val);

 fwrite(&e, sizeof(struct entier), 1, fptr);

 }

 fclose(fptr);

 return 0;

}

 Execution:

L1-Computer Science – All Sections – Algorithmics and Data Structures 2 (ADS2)
Chapter 2 : Files (Text Files and Binary Files)- Algorithmic Language and C Language

 L1.Computer Science.ADS2.Pr Boucheham

 Page 18

e. Using structure struct for 3 int numbers (homogeneous data) :

Prog.11 :

Example 5: Writing numbers to a binary file: using 3-int number structs:

#include <stdio.h>

#include <stdlib.h>

struct entier {

 int v1;

 int v2;

 int v3;

};

int main(){

 int n,i;

struct entier e;

 FILE *fptr;

 if ((fptr = fopen("Data.dat","wb")) == NULL){

 printf("Error opening file Data.dat");

 exit(1);

 }

 printf(" Number of structs to write in file Data.dat: n = ");

 scanf("%d",&n);

 for(i = 1; i <= n; i++){

 e.v1 = 3*i + 1;

 e.v2 = 5*i + 1;

 e.v3 = 7*i + 1;

 printf("\n i= %d e.v1=%d e.v2=%d e.v3=%d", i,e.v1,e.v2,e.v3);

 fwrite(&e, sizeof(struct entier), 1, fptr);

 }

 fclose(fptr);

 return 0;

}

Execution :

L1-Computer Science – All Sections – Algorithmics and Data Structures 2 (ADS2)
Chapter 2 : Files (Text Files and Binary Files)- Algorithmic Language and C Language

 L1.Computer Science.ADS2.Pr Boucheham

 Page 19

f. Reading the 3 numbers defined by struct

In this illustration, we read the 9 struct records each containing 3 int numbers:

Prog.12 :

Example 6: Writing numbers to a binary file: using 3- int numbers structs

#include <stdio.h>

#include <stdlib.h>

typedef struct Integer3 { Type Integer3 definition

 int v1;

 int v2;

 int v3;

}TInt3; // Alias of Type Integer3

int main(){

 int i=0; // structs of type Tint3 counter

TInt3 e; // Buffer for reading structs of type Tint3 from Binary file Data.dat

 FILE *fptr;

 if ((fptr = fopen("Data.dat","rb")) == NULL){ // Binary File opened in Read Mode

 printf("Error opening file Data.dat");

 exit(1);

 }

 printf(" File Data.dat Content : ");

 while(fread(&e, sizeof(TInt3), 1, fptr)==1){ // Reading Tint3 structs, one at a time

 i++;

 printf("\n Struct: i= %d e.v1=%d e.v2=%d e.v3=%d", i,e.v1,e.v2,e.v3);

 }

 printf("\n Number of extracted TInt3 structs : %d",i);

 fclose(fptr);

 return 0;

}

Exécution :

L1-Computer Science – All Sections – Algorithmics and Data Structures 2 (ADS2)
Chapter 2 : Files (Text Files and Binary Files)- Algorithmic Language and C Language

 L1.Computer Science.ADS2.Pr Boucheham

 Page 20

g. Writing to a binary file defined by heterogeneous data struct

Example 7: Writing to a binary file using structs of 3 heterogeneous data: Car(Make: String, Weight(Ton): Float,

Year: integer)

 Prog 13 :

 #include <stdio.h>

#include <stdlib.h>

typedef struct car {

 char mq[10];

 float po;

 int an;

}Tcar; // Type Tcar

int main(){

 int n,i;

//struct voiture e;

 FILE *fptr;

 if ((fptr = fopen("Cars.dat","wb")) == NULL){ // File Cars.dat opening, creation mode

 printf("Error opening file");

 exit(1);

 }

 Tcar v1={"Volvo",2.1,2015};

 Tcar v2={"Honda",3.1,1999};

 Tcar v3={"Toyoyta",1.5,2019};

 Tcar v4={"Renault",2.2,2004};

 Tcar v5={"Peugeot",0.5,2017};

 fwrite(&v1, sizeof(Tcar), 1, fptr);

 printf("Volvo written in file Cars.dat \n");

 fwrite(&v2, sizeof(Tcar), 1, fptr);

 printf("Honda written in file Cars.dat \n");

L1-Computer Science – All Sections – Algorithmics and Data Structures 2 (ADS2)
Chapter 2 : Files (Text Files and Binary Files)- Algorithmic Language and C Language

 L1.Computer Science.ADS2.Pr Boucheham

 Page 21

 fwrite(&v3, sizeof(Tcar), 1, fptr);

 printf("Toyota written in file Cars.dat \n");

 fwrite(&v5, sizeof(Tcar), 1, fptr);

 printf("Renault written in file Cars.dat \n");

 fwrite(&v3, sizeof(Tcar), 1, fptr);

 printf("Peugeot written in file Cars.dat \n");

 fclose(fptr);

 return 0;

}

Execution :

h. Reading data from a binary file defined by heterogeneous data in a struct Tcar:

Prog. 14 :

#include <stdio.h>

#include <stdlib.h>

typedef struct car {

 char mq[10];

 float po;

 int an;

}Tcar;

int main(){

 int n=2,i;

 char m[10];

 float p;

 int a;

Tcar e;

 FILE *fptr;

 if ((fptr = fopen("Cars.dat","rb")) == NULL){

 printf("Error opening file Cars.dat");

 exit(1);

 }

 printf(" Data read from binary file Cars.dat : \n ");

 printf(" \n Car : Make - Weight(Ton) - Year ");

 while(fread(&e, sizeof(Tcar), 1, fptr)==1)

 printf("\n %10s %4.1f %8d",e.mq,e.po,e.an);

 fclose(fptr);

 return 0;

}

Exécution :

L1-Computer Science – All Sections – Algorithmics and Data Structures 2 (ADS2)
Chapter 2 : Files (Text Files and Binary Files)- Algorithmic Language and C Language

 L1.Computer Science.ADS2.Pr Boucheham

 Page 22

6. Illustration of the direct access function fseek():

Example: fseek():https://www.geeksforgeeks.org/fseek-in-c-with-example/

a. Syntax of fseek()

 int fseek(PointerToFile, long int offset, int offsetmode);

où:

PointerToFile: is the pointer to the external file.

offset: Number of bytes to 'skip' from a position chosen by offsetmode.

When this number is positive: move forward.

When negative, move backwards.

offsetmode: There are 3 cases:

0 or SEEK_SET : with respect to the beginning of the file

1 ou SEEK_CUR : with respect to the current position

2 ou SEEK_END : with respect to the file end.

Retuned values:

 0: Operation was successful

 1: Operation failed.

L1-Computer Science – All Sections – Algorithmics and Data Structures 2 (ADS2)
Chapter 2 : Files (Text Files and Binary Files)- Algorithmic Language and C Language

 L1.Computer Science.ADS2.Pr Boucheham

 Page 23

Example: Illustration of fseek() function:

The below C Program demonstrates one case use of fseek() function.

// C Program to demonstrate the use of fseek()

#include <stdio.h>

int main()

{

 FILE* fp;

 char str[30];

 fp = fopen("Chapitre2Eng.txt", "r");

 // Moving pointer to end

 fseek(fp, 18, SEEK_SET); // Move forward from file ‘Chapter2Eng.txt’

 fgets(str, 30, fp);

 // Printing position of pointer

 printf(" Read string: <%s>",str);

 return 0;

}

Execution:

